Computer Science > Machine Learning
[Submitted on 7 Oct 2023 (v1), last revised 20 Jun 2024 (this version, v6)]
Title:Keep Moving: identifying task-relevant subspaces to maximise plasticity for newly learned tasks
View PDF HTML (experimental)Abstract:Continual learning algorithms strive to acquire new knowledge while preserving prior information. Often, these algorithms emphasise stability and restrict network updates upon learning new tasks. In many cases, such restrictions come at a cost to the model's plasticity, i.e. the model's ability to adapt to the requirements of a new task. But is all change detrimental? Here, we approach this question by proposing that activation spaces in neural networks can be decomposed into two subspaces: a readout range in which change affects prior tasks and a null space in which change does not alter prior performance. Based on experiments with this novel technique, we show that, indeed, not all activation change is associated with forgetting. Instead, only change in the subspace visible to the readout of a task can lead to decreased stability, while restricting change outside of this subspace is associated only with a loss of plasticity. Analysing various commonly used algorithms, we show that regularisation-based techniques do not fully disentangle the two spaces and, as a result, restrict plasticity more than need be. We expand our results by investigating a linear model in which we can manipulate learning in the two subspaces directly and thus causally link activation changes to stability and plasticity. For hierarchical, nonlinear cases, we present an approximation that enables us to estimate functionally relevant subspaces at every layer of a deep nonlinear network, corroborating our previous insights. Together, this work provides novel means to derive insights into the mechanisms behind stability and plasticity in continual learning and may serve as a diagnostic tool to guide developments of future continual learning algorithms that stabilise inference while allowing maximal space for learning.
Submission history
From: Sushrut Thorat [view email][v1] Sat, 7 Oct 2023 08:54:43 UTC (5,148 KB)
[v2] Tue, 10 Oct 2023 06:22:45 UTC (5,148 KB)
[v3] Mon, 20 Nov 2023 16:09:07 UTC (5,391 KB)
[v4] Wed, 17 Jan 2024 15:10:26 UTC (5,227 KB)
[v5] Fri, 16 Feb 2024 13:30:44 UTC (4,026 KB)
[v6] Thu, 20 Jun 2024 12:07:31 UTC (5,420 KB)
Current browse context:
cs.LG
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.