Computer Science > Computer Vision and Pattern Recognition
[Submitted on 2 Oct 2023 (v1), last revised 3 Jul 2024 (this version, v2)]
Title:Self-distilled Masked Attention guided masked image modeling with noise Regularized Teacher (SMART) for medical image analysis
View PDF HTML (experimental)Abstract:Pretraining vision transformers (ViT) with attention guided masked image modeling (MIM) has shown to increase downstream accuracy for natural image analysis. Hierarchical shifted window (Swin) transformer, often used in medical image analysis cannot use attention guided masking as it lacks an explicit [CLS] token, needed for computing attention maps for selective masking. We thus enhanced Swin with semantic class attention. We developed a co-distilled Swin transformer that combines a noisy momentum updated teacher to guide selective masking for MIM. Our approach called \textsc{s}e\textsc{m}antic \textsc{a}ttention guided co-distillation with noisy teacher \textsc{r}egularized Swin \textsc{T}rans\textsc{F}ormer (SMARTFormer) was applied for analyzing 3D computed tomography datasets with lung nodules and malignant lung cancers (LC). We also analyzed the impact of semantic attention and noisy teacher on pretraining and downstream accuracy. SMARTFormer classified lesions (malignant from benign) with a high accuracy of 0.895 of 1000 nodules, predicted LC treatment response with accuracy of 0.74, and achieved high accuracies even in limited data regimes. Pretraining with semantic attention and noisy teacher improved ability to distinguish semantically meaningful structures such as organs in a unsupervised clustering task and localize abnormal structures like tumors. Code, models will be made available through GitHub upon paper acceptance.
Submission history
From: Jue Jiang Dr. [view email][v1] Mon, 2 Oct 2023 13:53:55 UTC (10,243 KB)
[v2] Wed, 3 Jul 2024 11:49:33 UTC (23,657 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.