Computer Science > Computer Science and Game Theory
[Submitted on 2 Oct 2023 (v1), last revised 14 Nov 2024 (this version, v2)]
Title:Fair Division with Subjective Divisibility
View PDF HTML (experimental)Abstract:The classic fair division problems assume the resources to be allocated are either divisible or indivisible, or contain a mixture of both, but the agents always have a predetermined and uncontroversial agreement on the (in)divisibility of the resources. In this paper, we propose and study a new model for fair division in which agents have their own subjective divisibility over the goods to be allocated. That is, some agents may find a good to be indivisible and get utilities only if they receive the whole good, while others may consider the same good to be divisible and thus can extract utilities according to the fraction of the good they receive. We investigate fairness properties that can be achieved when agents have subjective divisibility. First, we consider the maximin share (MMS) guarantee and show that the worst-case MMS approximation guarantee is at most $2/3$ for $n \geq 2$ agents and this ratio is tight in the two- and three-agent cases. This is in contrast to the classic fair division settings involving two or three agents. We also give an algorithm that produces a $1/2$-MMS allocation for an arbitrary number of agents. Second, we study a hierarchy of envy-freeness relaxations, including EF1M, EFM and EFXM, ordered by increasing strength. While EF1M is compatible with non-wastefulness (an economic efficiency notion), this is not the case for EFM, even for two agents. Nevertheless, an EFXM and non-wasteful allocation always exists for two agents if at most one good is discarded.
Submission history
From: Xinhang Lu [view email][v1] Mon, 2 Oct 2023 08:37:42 UTC (32 KB)
[v2] Thu, 14 Nov 2024 12:37:27 UTC (38 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.