Computer Science > Computers and Society
[Submitted on 6 Sep 2023]
Title:Students Success Modeling: Most Important Factors
View PDFAbstract:The importance of retention rate for higher education institutions has encouraged data analysts to present various methods to predict at-risk students. The present study, motivated by the same encouragement, proposes a deep learning model trained with 121 features of diverse categories extracted or engineered out of the records of 60,822 postsecondary students. The model undertakes to identify students likely to graduate, the ones likely to transfer to a different school, and the ones likely to drop out and leave their higher education unfinished. This study undertakes to adjust its predictive methods for different stages of curricular progress of students. The temporal aspects introduced for this purpose are accounted for by incorporating layers of LSTM in the model. Our experiments demonstrate that distinguishing between to-be-graduate and at-risk students is reasonably achievable in the earliest stages, and then it rapidly improves, but the resolution within the latter category (dropout vs. transfer) depends on data accumulated over time. However, the model remarkably foresees the fate of students who stay in the school for three years. The model is also assigned to present the weightiest features in the procedure of prediction, both on institutional and student levels. A large, diverse sample size along with the investigation of more than one hundred extracted or engineered features in our study provide new insights into variables that affect students success, predict dropouts with reasonable accuracy, and shed light on the less investigated issue of transfer between colleges. More importantly, by providing individual-level predictions (as opposed to school-level predictions) and addressing the outcomes of transfers, this study improves the use of ML in the prediction of educational outcomes.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.