Computer Science > Hardware Architecture
[Submitted on 19 Sep 2023]
Title:Flip: Data-Centric Edge CGRA Accelerator
View PDFAbstract:Coarse-Grained Reconfigurable Arrays (CGRA) are promising edge accelerators due to the outstanding balance in flexibility, performance, and energy efficiency. Classic CGRAs statically map compute operations onto the processing elements (PE) and route the data dependencies among the operations through the Network-on-Chip. However, CGRAs are designed for fine-grained static instruction-level parallelism and struggle to accelerate applications with dynamic and irregular data-level parallelism, such as graph processing. To address this limitation, we present Flip, a novel accelerator that enhances traditional CGRA architectures to boost the performance of graph applications. Flip retains the classic CGRA execution model while introducing a special data-centric mode for efficient graph processing. Specifically, it exploits the natural data parallelism of graph algorithms by mapping graph vertices onto processing elements (PEs) rather than the operations, and supporting dynamic routing of temporary data according to the runtime evolution of the graph frontier. Experimental results demonstrate that Flip achieves up to 36$\times$ speedup with merely 19% more area compared to classic CGRAs. Compared to state-of-the-art large-scale graph processors, Flip has similar energy efficiency and 2.2$\times$ better area efficiency at a much-reduced power/area budget.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.