Quantum Physics
[Submitted on 18 Sep 2023 (v1), last revised 18 Dec 2023 (this version, v2)]
Title:Quantum Vision Clustering
View PDF HTML (experimental)Abstract:Unsupervised visual clustering has garnered significant attention in recent times, aiming to characterize distributions of unlabeled visual images through clustering based on a parameterized appearance approach. Alternatively, clustering algorithms can be viewed as assignment problems, often characterized as NP-hard, yet precisely solvable for small instances on contemporary hardware. Adiabatic quantum computing (AQC) emerges as a promising solution, poised to deliver substantial speedups for a range of NP-hard optimization problems. However, existing clustering formulations face challenges in quantum computing adoption due to scalability issues. In this study, we present the first clustering formulation tailored for resolution using Adiabatic quantum computing. An Ising model is introduced to represent the quantum mechanical system implemented on AQC. The proposed approach demonstrates high competitiveness compared to state-of-the-art optimization-based methods, even when utilizing off-the-shelf integer programming solvers. Lastly, this work showcases the solvability of the proposed clustering problem on current-generation real quantum computers for small examples and analyzes the properties of the obtained solutions
Submission history
From: Xuan Bac Nguyen [view email][v1] Mon, 18 Sep 2023 16:15:16 UTC (237 KB)
[v2] Mon, 18 Dec 2023 01:56:37 UTC (254 KB)
Current browse context:
quant-ph
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.