Computer Science > Machine Learning
[Submitted on 16 Sep 2023]
Title:Data-driven Reachability using Christoffel Functions and Conformal Prediction
View PDFAbstract:An important mathematical tool in the analysis of dynamical systems is the approximation of the reach set, i.e., the set of states reachable after a given time from a given initial state. This set is difficult to compute for complex systems even if the system dynamics are known and given by a system of ordinary differential equations with known coefficients. In practice, parameters are often unknown and mathematical models difficult to obtain. Data-based approaches are promised to avoid these difficulties by estimating the reach set based on a sample of states. If a model is available, this training set can be obtained through numerical simulation. In the absence of a model, real-life observations can be used instead. A recently proposed approach for data-based reach set approximation uses Christoffel functions to approximate the reach set. Under certain assumptions, the approximation is guaranteed to converge to the true solution. In this paper, we improve upon these results by notably improving the sample efficiency and relaxing some of the assumptions by exploiting statistical guarantees from conformal prediction with training and calibration sets. In addition, we exploit an incremental way to compute the Christoffel function to avoid the calibration set while maintaining the statistical convergence guarantees. Furthermore, our approach is robust to outliers in the training and calibration set.
Submission history
From: Faicel Chamroukhi [view email][v1] Sat, 16 Sep 2023 12:21:57 UTC (19,956 KB)
Current browse context:
cs.LG
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.