Computer Science > Data Structures and Algorithms
[Submitted on 14 Sep 2023]
Title:International Competition on Graph Counting Algorithms 2023
View PDFAbstract:This paper reports on the details of the International Competition on Graph Counting Algorithms (ICGCA) held in 2023. The graph counting problem is to count the subgraphs satisfying specified constraints on a given graph. The problem belongs to #P-complete, a computationally tough class. Since many essential systems in modern society, e.g., infrastructure networks, are often represented as graphs, graph counting algorithms are a key technology to efficiently scan all the subgraphs representing the feasible states of the system. In the ICGCA, contestants were asked to count the paths on a graph under a length constraint. The benchmark set included 150 challenging instances, emphasizing graphs resembling infrastructure networks. Eleven solvers were submitted and ranked by the number of benchmarks correctly solved within a time limit. The winning solver, TLDC, was designed based on three fundamental approaches: backtracking search, dynamic programming, and model counting or #SAT (a counting version of Boolean satisfiability). Detailed analyses show that each approach has its own strengths, and one approach is unlikely to dominate the others. The codes and papers of the participating solvers are available: this https URL.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.