Computer Science > Cryptography and Security
[Submitted on 12 Sep 2023]
Title:Systematic Evaluation of Geolocation Privacy Mechanisms
View PDFAbstract:Location data privacy has become a serious concern for users as Location Based Services (LBSs) have become an important part of their life. It is possible for malicious parties having access to geolocation data to learn sensitive information about the user such as religion or political views. Location Privacy Preserving Mechanisms (LPPMs) have been proposed by previous works to ensure the privacy of the shared data while allowing the users to use LBSs. But there is no clear view of which mechanism to use according to the scenario in which the user makes use of a LBS. The scenario is the way the user is using a LBS (frequency of reports, number of reports). In this paper, we study the sensitivity of LPPMs on the scenario on which they are used. We propose a framework to systematically evaluate LPPMs by considering an exhaustive combination of LPPMs, attacks and metrics. Using our framework we compare a selection of LPPMs including an improved mechanism that we introduce. By evaluating over a variety of scenarios, we find that the efficacy (privacy, utility, and robustness) of the studied mechanisms is dependent on the scenario: for example the privacy of Planar Laplace geo-indistinguishability is greatly reduced in a continuous scenario. We show that the scenario is essential to consider when choosing an obfuscation mechanism for a given application.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.