Mathematics > Optimization and Control
[Submitted on 5 Sep 2023]
Title:First and zeroth-order implementations of the regularized Newton method with lazy approximated Hessians
View PDFAbstract:In this work, we develop first-order (Hessian-free) and zero-order (derivative-free) implementations of the Cubically regularized Newton method for solving general non-convex optimization problems. For that, we employ finite difference approximations of the derivatives. We use a special adaptive search procedure in our algorithms, which simultaneously fits both the regularization constant and the parameters of the finite difference approximations. It makes our schemes free from the need to know the actual Lipschitz constants. Additionally, we equip our algorithms with the lazy Hessian update that reuse a previously computed Hessian approximation matrix for several iterations. Specifically, we prove the global complexity bound of $\mathcal{O}( n^{1/2} \epsilon^{-3/2})$ function and gradient evaluations for our new Hessian-free method, and a bound of $\mathcal{O}( n^{3/2} \epsilon^{-3/2} )$ function evaluations for the derivative-free method, where $n$ is the dimension of the problem and $\epsilon$ is the desired accuracy for the gradient norm. These complexity bounds significantly improve the previously known ones in terms of the joint dependence on $n$ and $\epsilon$, for the first-order and zeroth-order non-convex optimization.
Current browse context:
math.OC
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.