Electrical Engineering and Systems Science > Audio and Speech Processing
[Submitted on 4 Sep 2023 (v1), last revised 27 Jul 2024 (this version, v4)]
Title:RGI-Net: 3D Room Geometry Inference from Room Impulse Responses With Hidden First-Order Reflections
View PDF HTML (experimental)Abstract:Room geometry is important prior information for implementing realistic 3D audio rendering. For this reason, various room geometry inference (RGI) methods have been developed by utilizing the time-of-arrival (TOA) or time-difference-of-arrival (TDOA) information in room impulse responses (RIRs). However, the conventional RGI technique poses several assumptions, such as convex room shapes, the number of walls known in priori, and the visibility of first-order reflections. In this work, we introduce the RGI-Net which can estimate room geometries without the aforementioned assumptions. RGI-Net learns and exploits complex relationships between low-order and high-order reflections in RIRs and, thus, can estimate room shapes even when the shape is non-convex or first-order reflections are missing in the RIRs. RGI-Net includes the evaluation network that separately evaluates the presence probability of walls, so the geometry inference is possible without prior knowledge of the number of walls.
Submission history
From: Inmo Yeon [view email][v1] Mon, 4 Sep 2023 10:45:53 UTC (4,640 KB)
[v2] Wed, 21 Feb 2024 06:07:04 UTC (4,736 KB)
[v3] Wed, 1 May 2024 04:58:20 UTC (4,639 KB)
[v4] Sat, 27 Jul 2024 07:37:32 UTC (4,639 KB)
Current browse context:
eess.AS
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.