Computer Science > Robotics
[Submitted on 30 Aug 2023]
Title:EnsembleFollower: A Hybrid Car-Following Framework Based On Reinforcement Learning and Hierarchical Planning
View PDFAbstract:Car-following models have made significant contributions to our understanding of longitudinal driving behavior. However, they often exhibit limited accuracy and flexibility, as they cannot fully capture the complexity inherent in car-following processes, or may falter in unseen scenarios due to their reliance on confined driving skills present in training data. It is worth noting that each car-following model possesses its own strengths and weaknesses depending on specific driving scenarios. Therefore, we propose EnsembleFollower, a hierarchical planning framework for achieving advanced human-like car-following. The EnsembleFollower framework involves a high-level Reinforcement Learning-based agent responsible for judiciously managing multiple low-level car-following models according to the current state, either by selecting an appropriate low-level model to perform an action or by allocating different weights across all low-level components. Moreover, we propose a jerk-constrained kinematic model for more convincing car-following simulations. We evaluate the proposed method based on real-world driving data from the HighD dataset. The experimental results illustrate that EnsembleFollower yields improved accuracy of human-like behavior and achieves effectiveness in combining hybrid models, demonstrating that our proposed framework can handle diverse car-following conditions by leveraging the strengths of various low-level models.
Current browse context:
cs.RO
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.