Computer Science > Artificial Intelligence
[Submitted on 28 Aug 2023 (v1), last revised 12 Oct 2023 (this version, v3)]
Title:Spread Control Method on Unknown Networks Based on Hierarchical Reinforcement Learning
View PDFAbstract:Epidemics such as COVID-19 pose serious threats to public health and our society, and it is critical to investigate effective methods to control the spread of epidemics over networks. Prior works on epidemic control often assume complete knowledge of network structures, a presumption seldom valid in real-world situations. In this paper, we study epidemic control on networks with unknown structures, and propose a hierarchical reinforcement learning framework for joint network structure exploration and epidemic control. To reduce the action space and achieve computation tractability, our proposed framework contains three modules: the Policy Selection Module, which determines whether to explore the structure or remove nodes to control the epidemic; the Explore Module, responsible for selecting nodes to explore; and the Remove Module, which decides which nodes to remove to stop the epidemic spread. Simulation results show that our proposed method outperforms baseline methods.
Submission history
From: Wenxiang Dong [view email][v1] Mon, 28 Aug 2023 05:29:49 UTC (270 KB)
[v2] Tue, 10 Oct 2023 07:39:27 UTC (763 KB)
[v3] Thu, 12 Oct 2023 08:26:55 UTC (766 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.