Computer Science > Computer Vision and Pattern Recognition
[Submitted on 28 Aug 2023 (v1), last revised 7 Oct 2023 (this version, v2)]
Title:BIT: Bi-Level Temporal Modeling for Efficient Supervised Action Segmentation
View PDFAbstract:We address the task of supervised action segmentation which aims to partition a video into non-overlapping segments, each representing a different action. Recent works apply transformers to perform temporal modeling at the frame-level, which suffer from high computational cost and cannot well capture action dependencies over long temporal horizons. To address these issues, we propose an efficient BI-level Temporal modeling (BIT) framework that learns explicit action tokens to represent action segments, in parallel performs temporal modeling on frame and action levels, while maintaining a low computational cost. Our model contains (i) a frame branch that uses convolution to learn frame-level relationships, (ii) an action branch that uses transformer to learn action-level dependencies with a small set of action tokens and (iii) cross-attentions to allow communication between the two branches. We apply and extend a set-prediction objective to allow each action token to represent one or multiple action segments, thus can avoid learning a large number of tokens over long videos with many segments. Thanks to the design of our action branch, we can also seamlessly leverage textual transcripts of videos (when available) to help action segmentation by using them to initialize the action tokens. We evaluate our model on four video datasets (two egocentric and two third-person) for action segmentation with and without transcripts, showing that BIT significantly improves the state-of-the-art accuracy with much lower computational cost (30 times faster) compared to existing transformer-based methods.
Submission history
From: Zijia Lu [view email][v1] Mon, 28 Aug 2023 20:59:15 UTC (411 KB)
[v2] Sat, 7 Oct 2023 21:50:36 UTC (402 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.