Computer Science > Distributed, Parallel, and Cluster Computing
[Submitted on 25 Aug 2023]
Title:Fortran High-Level Synthesis: Reducing the barriers to accelerating HPC codes on FPGAs
View PDFAbstract:In recent years the use of FPGAs to accelerate scientific applications has grown, with numerous applications demonstrating the benefit of FPGAs for high performance workloads. However, whilst High Level Synthesis (HLS) has significantly lowered the barrier to entry in programming FPGAs by enabling programmers to use C++, a major challenge is that most often these codes are not originally written in C++. Instead, Fortran is the lingua franca of scientific computing and-so it requires a complex and time consuming initial step to convert into C++ even before considering the FPGA.
In this paper we describe work enabling Fortran for AMD Xilinx FPGAs by connecting the LLVM Flang front end to AMD Xilinx's LLVM back end. This enables programmers to use Fortran as a first-class language for programming FPGAs, and as we demonstrate enjoy all the tuning and optimisation opportunities that HLS C++ provides. Furthermore, we demonstrate that certain language features of Fortran make it especially beneficial for programming FPGAs compared to C++. The result of this work is a lowering of the barrier to entry in using FPGAs for scientific computing, enabling programmers to leverage their existing codebase and language of choice on the FPGA directly.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.