Computer Science > Machine Learning
[Submitted on 7 Aug 2023]
Title:A Meta-learning based Stacked Regression Approach for Customer Lifetime Value Prediction
View PDFAbstract:Companies across the globe are keen on targeting potential high-value customers in an attempt to expand revenue and this could be achieved only by understanding the customers more. Customer Lifetime Value (CLV) is the total monetary value of transactions/purchases made by a customer with the business over an intended period of time and is used as means to estimate future customer interactions. CLV finds application in a number of distinct business domains such as Banking, Insurance, Online-entertainment, Gaming, and E-Commerce. The existing distribution-based and basic (recency, frequency & monetary) based models face a limitation in terms of handling a wide variety of input features. Moreover, the more advanced Deep learning approaches could be superfluous and add an undesirable element of complexity in certain application areas. We, therefore, propose a system which is able to qualify both as effective, and comprehensive yet simple and interpretable. With that in mind, we develop a meta-learning-based stacked regression model which combines the predictions from bagging and boosting models that each is found to perform well individually. Empirical tests have been carried out on an openly available Online Retail dataset to evaluate various models and show the efficacy of the proposed approach.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.