Electrical Engineering and Systems Science > Signal Processing
[Submitted on 14 Aug 2023]
Title:Deep convolutional neural networks for cyclic sensor data
View PDFAbstract:Predictive maintenance plays a critical role in ensuring the uninterrupted operation of industrial systems and mitigating the potential risks associated with system failures. This study focuses on sensor-based condition monitoring and explores the application of deep learning techniques using a hydraulic system testbed dataset. Our investigation involves comparing the performance of three models: a baseline model employing conventional methods, a single CNN model with early sensor fusion, and a two-lane CNN model (2L-CNN) with late sensor fusion. The baseline model achieves an impressive test error rate of 1% by employing late sensor fusion, where feature extraction is performed individually for each sensor. However, the CNN model encounters challenges due to the diverse sensor characteristics, resulting in an error rate of 20.5%. To further investigate this issue, we conduct separate training for each sensor and observe variations in accuracy. Additionally, we evaluate the performance of the 2L-CNN model, which demonstrates significant improvement by reducing the error rate by 33% when considering the combination of the least and most optimal sensors. This study underscores the importance of effectively addressing the complexities posed by multi-sensor systems in sensor-based condition monitoring.
Current browse context:
eess.SP
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.