Computer Science > Information Retrieval
[Submitted on 9 Aug 2023 (v1), last revised 23 Aug 2023 (this version, v2)]
Title:Pareto Invariant Representation Learning for Multimedia Recommendation
View PDFAbstract:Multimedia recommendation involves personalized ranking tasks, where multimedia content is usually represented using a generic encoder. However, these generic representations introduce spurious correlations that fail to reveal users' true preferences. Existing works attempt to alleviate this problem by learning invariant representations, but overlook the balance between independent and identically distributed (IID) and out-of-distribution (OOD) generalization. In this paper, we propose a framework called Pareto Invariant Representation Learning (PaInvRL) to mitigate the impact of spurious correlations from an IID-OOD multi-objective optimization perspective, by learning invariant representations (intrinsic factors that attract user attention) and variant representations (other factors) simultaneously. Specifically, PaInvRL includes three iteratively executed modules: (i) heterogeneous identification module, which identifies the heterogeneous environments to reflect distributional shifts for user-item interactions; (ii) invariant mask generation module, which learns invariant masks based on the Pareto-optimal solutions that minimize the adaptive weighted Invariant Risk Minimization (IRM) and Empirical Risk (ERM) losses; (iii) convert module, which generates both variant representations and item-invariant representations for training a multi-modal recommendation model that mitigates spurious correlations and balances the generalization performance within and cross the environmental distributions. We compare the proposed PaInvRL with state-of-the-art recommendation models on three public multimedia recommendation datasets (Movielens, Tiktok, and Kwai), and the experimental results validate the effectiveness of PaInvRL for both within- and cross-environmental learning.
Submission history
From: Haoxuan Li [view email][v1] Wed, 9 Aug 2023 04:57:56 UTC (4,761 KB)
[v2] Wed, 23 Aug 2023 18:47:13 UTC (4,993 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.