Computer Science > Distributed, Parallel, and Cluster Computing
[Submitted on 5 Aug 2023 (v1), last revised 11 Nov 2023 (this version, v2)]
Title:Towards Fast, Adaptive, and Hardware-Assisted User-Space Scheduling
View PDFAbstract:Modern datacenter applications are prone to high tail latencies since their requests typically follow highly-dispersive distributions. Delivering fast interrupts is essential to reducing tail latency. Prior work has proposed both OS- and system-level solutions to reduce tail latencies for microsecond-scale workloads through better scheduling. Unfortunately, existing approaches like customized dataplane OSes, require significant OS changes, experience scalability limitations, or do not reach the full performance capabilities hardware offers.
The emergence of new hardware features like UINTR exposed new opportunities to rethink the design paradigms and abstractions of traditional scheduling systems. We propose LibPreemptible, a preemptive user-level threading library that is flexible, lightweight, and adaptive. LibPreemptible was built with a set of optimizations like LibUtimer for scalability, and deadline-oriented API for flexible policies, time-quantum controller for adaptiveness. Compared to the prior state-of-the-art scheduling system Shinjuku, our system achieves significant tail latency and throughput improvements for various workloads without modifying the kernel. We also demonstrate the flexibility of LibPreemptible across scheduling policies for real applications experiencing varying load levels and characteristics.
Submission history
From: Yueying Li [view email][v1] Sat, 5 Aug 2023 15:09:12 UTC (607 KB)
[v2] Sat, 11 Nov 2023 16:22:45 UTC (1,636 KB)
Current browse context:
cs.DC
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.