Mathematics > Numerical Analysis
[Submitted on 4 Aug 2023]
Title:Arbitrary-Lagrangian-Eulerian finite volume IMEX schemes for the incompressible Navier-Stokes equations on evolving Chimera meshes
View PDFAbstract:In this article we design a finite volume semi-implicit IMEX scheme for the incompressible Navier-Stokes equations on evolving Chimera meshes. We employ a time discretization technique that separates explicit and implicit terms which encompass both slow and fast scales. The finite volume approach for both explicit and implicit terms allows to encode into the nonlinear flux the velocity of displacement of the Chimera mesh via integration on moving cells. To attain second-order time accuracy, we employ semi-implicit IMEX Runge-Kutta schemes. These novel schemes are combined with a fractional-step method, thus the governing equations are eventually solved using a projection method to satisfy the divergence-free constraint of the velocity field. The implicit discretization of the viscous terms allows the CFL-type stability condition for the maximum admissible time step to be only defined by the relative fluid velocity referred to the movement of the frame and not depending also on the viscous eigenvalues. Communication between different grid blocks is enabled through compact exchange of information from the fringe cells of one mesh block to the field cells of the other block. Taking advantage of the continuity of the solution and the definition of a minimal compact stencil, the numerical solution of any system of differential equations is characterized by continuous data extrapolation. Free-stream preservation property, i.e. compliance with the Geometric Conservation Law (GCL), is respected. The accuracy and capabilities of the new numerical schemes is proved through an extensive range of test cases, demonstrating ability to solve relevant benchmarks in the field of incompressible fluids.
Submission history
From: Walter Boscheri Prof. [view email][v1] Fri, 4 Aug 2023 19:45:22 UTC (3,964 KB)
Current browse context:
math.NA
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.