Computer Science > Distributed, Parallel, and Cluster Computing
[Submitted on 3 Aug 2023]
Title:Time-optimal geodesic mutual visibility of robots on grids within minimum area
View PDFAbstract:The \textsc{Mutual Visibility} is a well-known problem in the context of mobile robots. For a set of $n$ robots disposed in the Euclidean plane, it asks for moving the robots without collisions so as to achieve a placement ensuring that no three robots are collinear. For robots moving on graphs, we consider the \textsc{Geodesic Mutual Visibility} ($\GMV$) problem. Robots move along the edges of the graph, without collisions, so as to occupy some vertices that guarantee they become pairwise geodesic mutually visible. This means that there is a shortest path (i.e., a "geodesic") between each pair of robots along which no other robots reside. We study this problem in the context of finite and infinite square grids, for robots operating under the standard Look-Compute-Move model. In both scenarios, we provide resolution algorithms along with formal correctness proofs, highlighting the most relevant peculiarities arising within the different contexts, while optimizing the time complexity.
Submission history
From: Serafino Cicerone [view email][v1] Thu, 3 Aug 2023 16:20:36 UTC (1,401 KB)
Current browse context:
cs.DC
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.