Computer Science > Robotics
[Submitted on 1 Aug 2023]
Title:Target Search and Navigation in Heterogeneous Robot Systems with Deep Reinforcement Learning
View PDFAbstract:Collaborative heterogeneous robot systems can greatly improve the efficiency of target search and navigation tasks. In this paper, we design a heterogeneous robot system consisting of a UAV and a UGV for search and rescue missions in unknown environments. The system is able to search for targets and navigate to them in a maze-like mine environment with the policies learned through deep reinforcement learning algorithms. During the training process, if two robots are trained simultaneously, the rewards related to their collaboration may not be properly obtained. Hence, we introduce a multi-stage reinforcement learning framework and a curiosity module to encourage agents to explore unvisited environments. Experiments in simulation environments show that our framework can train the heterogeneous robot system to achieve the search and navigation with unknown target locations while existing baselines may not, and accelerate the training speed.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.