Computer Science > Computer Vision and Pattern Recognition
[Submitted on 27 Jul 2023]
Title:A Memory-Augmented Multi-Task Collaborative Framework for Unsupervised Traffic Accident Detection in Driving Videos
View PDFAbstract:Identifying traffic accidents in driving videos is crucial to ensuring the safety of autonomous driving and driver assistance systems. To address the potential danger caused by the long-tailed distribution of driving events, existing traffic accident detection (TAD) methods mainly rely on unsupervised learning. However, TAD is still challenging due to the rapid movement of cameras and dynamic scenes in driving scenarios. Existing unsupervised TAD methods mainly rely on a single pretext task, i.e., an appearance-based or future object localization task, to detect accidents. However, appearance-based approaches are easily disturbed by the rapid movement of the camera and changes in illumination, which significantly reduce the performance of traffic accident detection. Methods based on future object localization may fail to capture appearance changes in video frames, making it difficult to detect ego-involved accidents (e.g., out of control of the ego-vehicle). In this paper, we propose a novel memory-augmented multi-task collaborative framework (MAMTCF) for unsupervised traffic accident detection in driving videos. Different from previous approaches, our method can more accurately detect both ego-involved and non-ego accidents by simultaneously modeling appearance changes and object motions in video frames through the collaboration of optical flow reconstruction and future object localization tasks. Further, we introduce a memory-augmented motion representation mechanism to fully explore the interrelation between different types of motion representations and exploit the high-level features of normal traffic patterns stored in memory to augment motion representations, thus enlarging the difference from anomalies. Experimental results on recently published large-scale dataset demonstrate that our method achieves better performance compared to previous state-of-the-art approaches.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.