Computer Science > Sound
[Submitted on 25 Jul 2023]
Title:CQNV: A combination of coarsely quantized bitstream and neural vocoder for low rate speech coding
View PDFAbstract:Recently, speech codecs based on neural networks have proven to perform better than traditional methods. However, redundancy in traditional parameter quantization is visible within the codec architecture of combining the traditional codec with the neural vocoder. In this paper, we propose a novel framework named CQNV, which combines the coarsely quantized parameters of a traditional parametric codec to reduce the bitrate with a neural vocoder to improve the quality of the decoded speech. Furthermore, we introduce a parameters processing module into the neural vocoder to enhance the application of the bitstream of traditional speech coding parameters to the neural vocoder, further improving the reconstructed speech's quality. In the experiments, both subjective and objective evaluations demonstrate the effectiveness of the proposed CQNV framework. Specifically, our proposed method can achieve higher quality reconstructed speech at 1.1 kbps than Lyra and Encodec at 3 kbps.
Current browse context:
cs.SD
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.