Computer Science > Multimedia
[Submitted on 25 Jul 2023]
Title:Text-oriented Modality Reinforcement Network for Multimodal Sentiment Analysis from Unaligned Multimodal Sequences
View PDFAbstract:Multimodal Sentiment Analysis (MSA) aims to mine sentiment information from text, visual, and acoustic modalities. Previous works have focused on representation learning and feature fusion strategies. However, most of these efforts ignored the disparity in the semantic richness of different modalities and treated each modality in the same manner. That may lead to strong modalities being neglected and weak modalities being overvalued. Motivated by these observations, we propose a Text-oriented Modality Reinforcement Network (TMRN), which focuses on the dominance of the text modality in MSA. More specifically, we design a Text-Centered Cross-modal Attention (TCCA) module to make full interaction for text/acoustic and text/visual pairs, and a Text-Gated Self-Attention (TGSA) module to guide the self-reinforcement of the other two modalities. Furthermore, we present an adaptive fusion mechanism to decide the proportion of different modalities involved in the fusion process. Finally, we combine the feature matrices into vectors to get the final representation for the downstream tasks. Experimental results show that our TMRN outperforms the state-of-the-art methods on two MSA benchmarks.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.