Statistics > Methodology
[Submitted on 20 Jul 2023]
Title:Edgewise outliers of network indexed signals
View PDFAbstract:We consider models for network indexed multivariate data involving a dependence between variables as well as across graph nodes.
In the framework of these models, we focus on outliers detection and introduce the concept of edgewise outliers. For this purpose, we first derive the distribution of some sums of squares, in particular squared Mahalanobis distances that can be used to fix detection rules and thresholds for outlier detection. We then propose a robust version of the deterministic MCD algorithm that we call edgewise MCD. An application on simulated data shows the interest of taking the dependence structure into account. We also illustrate the utility of the proposed method with a real data set.
Submission history
From: Christopher Rieser [view email][v1] Thu, 20 Jul 2023 21:22:02 UTC (4,093 KB)
Current browse context:
stat.ME
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.