Computer Science > Computation and Language
[Submitted on 13 Jul 2023 (v1), last revised 20 Feb 2024 (this version, v2)]
Title:Does Collaborative Human-LM Dialogue Generation Help Information Extraction from Human Dialogues?
View PDF HTML (experimental)Abstract:The capabilities of pretrained language models have opened opportunities to explore new application areas, but applications involving human-human interaction are limited by the fact that most data is protected from public release for privacy reasons. Problem-solving human dialogues in real applications can be much more complex than existing Wizard-of-Oz collections, preventing successful domain transfer. To support information extraction (IE) for a private call center dataset, we introduce a human-in-the-loop dialogue generation framework capable of synthesizing realistic dialogues. In IE experiments with auto insurance call center dialogues, we observe 25\% relative improvement in $F_1$ after augmenting a small set of real human conversations with synthetic data. We release code and our synthetic dataset to illustrate the complexity of real-world call center conversations and encourage development of complex dialogue datasets that are more representative of natural data.
Submission history
From: Bo-Ru Lu [view email][v1] Thu, 13 Jul 2023 20:02:50 UTC (7,592 KB)
[v2] Tue, 20 Feb 2024 06:12:39 UTC (7,588 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.