Computer Science > Discrete Mathematics
[Submitted on 14 Jul 2023]
Title:Exhaustive Generation of Linear Orthogonal Cellular Automata
View PDFAbstract:We consider the problem of exhaustively visiting all pairs of linear cellular automata which give rise to orthogonal Latin squares, i.e., linear Orthogonal Cellular Automata (OCA). The problem is equivalent to enumerating all pairs of coprime polynomials over a finite field having the same degree and a nonzero constant term. While previous research showed how to count all such pairs for a given degree and order of the finite field, no practical enumeration algorithms have been proposed so far. Here, we start closing this gap by addressing the case of polynomials defined over the field $\F_2$, which corresponds to binary CA. In particular, we exploit Benjamin and Bennett's bijection between coprime and non-coprime pairs of polynomials, which enables us to organize our study along three subproblems, namely the enumeration and count of: (1) sequences of constant terms, (2) sequences of degrees, and (3) sequences of intermediate terms. In the course of this investigation, we unveil interesting connections with algebraic language theory and combinatorics, obtaining an enumeration algorithm and an alternative derivation of the counting formula for this problem.
Current browse context:
cs.DM
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.