Computer Science > Computer Vision and Pattern Recognition
[Submitted on 11 Jul 2023 (v1), last revised 18 Jul 2023 (this version, v2)]
Title:ExFaceGAN: Exploring Identity Directions in GAN's Learned Latent Space for Synthetic Identity Generation
View PDFAbstract:Deep generative models have recently presented impressive results in generating realistic face images of random synthetic identities.
To generate multiple samples of a certain synthetic identity, previous works proposed to disentangle the latent space of GANs by incorporating additional supervision or regularization, enabling the manipulation of certain attributes. Others proposed to disentangle specific factors in unconditional pretrained GANs latent spaces to control their output, which also requires supervision by attribute classifiers. Moreover, these attributes are entangled in GAN's latent space, making it difficult to manipulate them without affecting the identity information. We propose in this work a framework, ExFaceGAN, to disentangle identity information in pretrained GANs latent spaces, enabling the generation of multiple samples of any synthetic identity. Given a reference latent code of any synthetic image and latent space of pretrained GAN, our ExFaceGAN learns an identity directional boundary that disentangles the latent space into two sub-spaces, with latent codes of samples that are either identity similar or dissimilar to a reference image. By sampling from each side of the boundary, our ExFaceGAN can generate multiple samples of synthetic identity without the need for designing a dedicated architecture or supervision from attribute classifiers. We demonstrate the generalizability and effectiveness of ExFaceGAN by integrating it into learned latent spaces of three SOTA GAN approaches. As an example of the practical benefit of our ExFaceGAN, we empirically prove that data generated by ExFaceGAN can be successfully used to train face recognition models (\url{this https URL}).
Submission history
From: Fadi Boutros [view email][v1] Tue, 11 Jul 2023 10:14:41 UTC (17,750 KB)
[v2] Tue, 18 Jul 2023 21:40:51 UTC (17,749 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.