Mathematics > Numerical Analysis
[Submitted on 6 Jul 2023]
Title:Recovery of Multiple Parameters in Subdiffusion from One Lateral Boundary Measurement
View PDFAbstract:This work is concerned with numerically recovering multiple parameters simultaneously in the subdiffusion model from one single lateral measurement on a part of the boundary, while in an incompletely known medium. We prove that the boundary measurement corresponding to a fairly general boundary excitation uniquely determines the order of the fractional derivative and the polygonal support of the diffusion coefficient, without knowing either the initial condition or the source. The uniqueness analysis further inspires the development of a robust numerical algorithm for recovering the fractional order and diffusion coefficient. The proposed algorithm combines small-time asymptotic expansion, analytic continuation of the solution and the level set method. We present extensive numerical experiments to illustrate the feasibility of the simultaneous recovery. In addition, we discuss the uniqueness of recovering general diffusion and potential coefficients from one single partial boundary measurement, when the boundary excitation is more specialized.
Current browse context:
math.NA
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.