Computer Science > Information Theory
[Submitted on 8 Jul 2023]
Title:Hybrid Successive Interference Cancellation and Power Adaptation: a Win-Win Strategy for Robust Uplink NOMA Transmission
View PDFAbstract:The aim of this paper is to reveal the importance of hybrid successive interference cancellation (SIC) and power adaptation (PA) for improving transmission robustness of uplink non-orthogonal multiple access (NOMA). Particularly, a cognitive radio inspired uplink NOMA communication scenario is considered, where one primary user is allocated one dedicated resource block, while M secondary users compete with each other to be opportunistically served by using the same resource block of the primary user. Two novel schemes are proposed for the considered scenario, namely hybrid SIC with PA (HSIC-PA) scheme and fixed SIC with PA (FSIC-PA) scheme. Both schemes can ensure that the secondary users are served without degrading the transmission reliability of the primary user compared to conventional orthogonal multiple access (OMA) based schemes. Rigorous analytical results are presented to evaluate the performance of the proposed two schemes. It is shown that both schemes can avoid outage probability error floors without any constraints on users' target rates in the high SNR regime. Furthermore, it is shown that the diversity gain achieved by the HSIC-PA scheme is M, while that of the FISC-PA scheme is only 1. Numerical results are provided to verify the developed analytical results and also demonstrate the superior performance achieved by the proposed schemes by comparing with the existing HSIC without PA (HSIC-NPA) scheme. The presented simulation results also show that HSIC-PA scheme performs the best among the three schemes, which indicates the importance of the combination of HSIC and PA for improving transmission robustness.
Current browse context:
cs.IT
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.