Computer Science > Machine Learning
[Submitted on 6 Jul 2023 (v1), last revised 5 Nov 2023 (this version, v2)]
Title:Towards Symmetry-Aware Generation of Periodic Materials
View PDFAbstract:We consider the problem of generating periodic materials with deep models. While symmetry-aware molecule generation has been studied extensively, periodic materials possess different symmetries, which have not been completely captured by existing methods. In this work, we propose SyMat, a novel material generation approach that can capture physical symmetries of periodic material structures. SyMat generates atom types and lattices of materials through generating atom type sets, lattice lengths and lattice angles with a variational auto-encoder model. In addition, SyMat employs a score-based diffusion model to generate atom coordinates of materials, in which a novel symmetry-aware probabilistic model is used in the coordinate diffusion process. We show that SyMat is theoretically invariant to all symmetry transformations on materials and demonstrate that SyMat achieves promising performance on random generation and property optimization tasks. Our code is publicly available as part of the AIRS library (this https URL).
Submission history
From: Youzhi Luo [view email][v1] Thu, 6 Jul 2023 01:05:34 UTC (213 KB)
[v2] Sun, 5 Nov 2023 14:43:55 UTC (394 KB)
Current browse context:
cs.LG
Change to browse by:
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.