Computer Science > Computer Vision and Pattern Recognition
[Submitted on 22 Jun 2023 (v1), last revised 19 Nov 2023 (this version, v5)]
Title:Iterative Scale-Up ExpansionIoU and Deep Features Association for Multi-Object Tracking in Sports
View PDFAbstract:Deep learning-based object detectors have driven notable progress in multi-object tracking algorithms. Yet, current tracking methods mainly focus on simple, regular motion patterns in pedestrians or vehicles. This leaves a gap in tracking algorithms for targets with nonlinear, irregular motion, like athletes. Additionally, relying on the Kalman filter in recent tracking algorithms falls short when object motion defies its linear assumption. To overcome these issues, we propose a novel online and robust multi-object tracking approach named deep ExpansionIoU (Deep-EIoU), which focuses on multi-object tracking for sports scenarios. Unlike conventional methods, we abandon the use of the Kalman filter and leverage the iterative scale-up ExpansionIoU and deep features for robust tracking in sports scenarios. This approach achieves superior tracking performance without adopting a more robust detector, all while keeping the tracking process in an online fashion. Our proposed method demonstrates remarkable effectiveness in tracking irregular motion objects, achieving a score of 77.2% HOTA on the SportsMOT dataset and 85.4% HOTA on the SoccerNet-Tracking dataset. It outperforms all previous state-of-the-art trackers on various large-scale multi-object tracking benchmarks, covering various kinds of sports scenarios. The code and models are available at this https URL.
Submission history
From: Hsiang-Wei Huang [view email][v1] Thu, 22 Jun 2023 17:47:08 UTC (11,452 KB)
[v2] Tue, 18 Jul 2023 04:00:22 UTC (11,577 KB)
[v3] Wed, 19 Jul 2023 03:46:37 UTC (11,577 KB)
[v4] Sun, 3 Sep 2023 06:37:16 UTC (15,036 KB)
[v5] Sun, 19 Nov 2023 02:26:50 UTC (16,013 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.