Computer Science > Distributed, Parallel, and Cluster Computing
[Submitted on 21 Jun 2023 (v1), last revised 26 Jun 2023 (this version, v3)]
Title:Recoil: Parallel rANS Decoding with Decoder-Adaptive Scalability
View PDFAbstract:Entropy coding is essential to data compression, image and video coding, etc. The Range variant of Asymmetric Numeral Systems (rANS) is a modern entropy coder, featuring superior speed and compression rate. As rANS is not designed for parallel execution, the conventional approach to parallel rANS partitions the input symbol sequence and encodes partitions with independent codecs, and more partitions bring extra overhead. This approach is found in state-of-the-art implementations such as DietGPU. It is unsuitable for content-delivery applications, as the parallelism is wasted if the decoder cannot decode all the partitions in parallel, but all the overhead is still transferred.
To solve this, we propose Recoil, a parallel rANS decoding approach with decoder-adaptive scalability. We discover that a single rANS-encoded bitstream can be decoded from any arbitrary position if the intermediate states are known. After renormalization, these states also have a smaller upper bound, which can be stored efficiently. We then split the encoded bitstream using a heuristic to evenly distribute the workload, and store the intermediate states and corresponding symbol indices as metadata. The splits can then be combined simply by eliminating extra metadata entries.
The main contribution of Recoil is reducing unnecessary data transfer by adaptively scaling parallelism overhead to match the decoder capability. The experiments show that Recoil decoding throughput is comparable to the conventional approach, scaling massively on CPUs and GPUs and greatly outperforming various other ANS-based codecs.
Submission history
From: Fangzheng Lin [view email][v1] Wed, 21 Jun 2023 09:38:28 UTC (1,359 KB)
[v2] Fri, 23 Jun 2023 06:13:58 UTC (1,444 KB)
[v3] Mon, 26 Jun 2023 15:15:09 UTC (1,444 KB)
Current browse context:
cs.DC
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.