Computer Science > Distributed, Parallel, and Cluster Computing
[Submitted on 20 Jun 2023]
Title:Fine-grained Policy-driven I/O Sharing for Burst Buffers
View PDFAbstract:A burst buffer is a common method to bridge the performance gap between the I/O needs of modern supercomputing applications and the performance of the shared file system on large-scale supercomputers. However, existing I/O sharing methods require resource isolation, offline profiling, or repeated execution that significantly limit the utilization and applicability of these systems. Here we present ThemisIO, a policy-driven I/O sharing framework for a remote-shared burst buffer: a dedicated group of I/O nodes, each with a local storage device. ThemisIO preserves high utilization by implementing opportunity fairness so that it can reallocate unused I/O resources to other applications. ThemisIO accurately and efficiently allocates I/O cycles among applications, purely based on real-time I/O behavior without requiring user-supplied information or offline-profiled application characteristics. ThemisIO supports a variety of fair sharing policies, such as user-fair, size-fair, as well as composite policies, e.g., group-then-user-fair. All these features are enabled by its statistical token design. ThemisIO can alter the execution order of incoming I/O requests based on assigned tokens to precisely balance I/O cycles between applications via time slicing, thereby enforcing processing isolation. Experiments using I/O benchmarks show that ThemisIO sustains 13.5-13.7% higher I/O throughput and 19.5-40.4% lower performance variation than existing algorithms. For real applications, ThemisIO significantly reduces the slowdown by 59.1-99.8% caused by I/O interference.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.