Computer Science > Computer Vision and Pattern Recognition
[Submitted on 16 Jun 2023 (v1), last revised 27 Nov 2023 (this version, v2)]
Title:Parameter-efficient is not sufficient: Exploring Parameter, Memory, and Time Efficient Adapter Tuning for Dense Predictions
View PDFAbstract:Pre-training & fine-tuning is a prevalent paradigm in computer vision (CV). Recently, parameter-efficient transfer learning (PETL) methods have shown promising performance in adapting to downstream tasks with only a few trainable parameters. Despite their success, the existing PETL methods in CV can be computationally expensive and require large amounts of memory and time cost during training, which limits low-resource users from conducting research and applications on large models. In this work, we propose Parameter, Memory, and Time Efficient Visual Adapter ($\mathrm{E^3VA}$) tuning to address this issue. We provide a gradient backpropagation highway for low-rank adapters which eliminates the need for expensive backpropagation through the frozen pre-trained model, resulting in substantial savings of training memory and training time. Furthermore, we optimise the $\mathrm{E^3VA}$ structure for CV tasks to promote model performance. Extensive experiments on COCO, ADE20K, and Pascal VOC benchmarks show that $\mathrm{E^3VA}$ can save up to 62.2% training memory and 26.2% training time on average, while achieving comparable performance to full fine-tuning and better performance than most PETL methods. Note that we can even train the Swin-Large-based Cascade Mask RCNN on GTX 1080Ti GPUs with less than 1.5% trainable parameters.
Submission history
From: Dongshuo Yin [view email][v1] Fri, 16 Jun 2023 09:54:07 UTC (375 KB)
[v2] Mon, 27 Nov 2023 12:58:59 UTC (722 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.