Computer Science > Machine Learning
[Submitted on 14 Jun 2023 (v1), last revised 12 Jul 2024 (this version, v3)]
Title:Skill-Critic: Refining Learned Skills for Hierarchical Reinforcement Learning
View PDF HTML (experimental)Abstract:Hierarchical reinforcement learning (RL) can accelerate long-horizon decision-making by temporally abstracting a policy into multiple levels. Promising results in sparse reward environments have been seen with skills, i.e. sequences of primitive actions. Typically, a skill latent space and policy are discovered from offline data. However, the resulting low-level policy can be unreliable due to low-coverage demonstrations or distribution shifts. As a solution, we propose the Skill-Critic algorithm to fine-tune the low-level policy in conjunction with high-level skill selection. Our Skill-Critic algorithm optimizes both the low-level and high-level policies; these policies are initialized and regularized by the latent space learned from offline demonstrations to guide the parallel policy optimization. We validate Skill-Critic in multiple sparse-reward RL environments, including a new sparse-reward autonomous racing task in Gran Turismo Sport. The experiments show that Skill-Critic's low-level policy fine-tuning and demonstration-guided regularization are essential for good performance. Code and videos are available at our website: this https URL.
Submission history
From: Ce Hao [view email][v1] Wed, 14 Jun 2023 09:24:32 UTC (6,851 KB)
[v2] Fri, 16 Jun 2023 02:03:30 UTC (6,851 KB)
[v3] Fri, 12 Jul 2024 01:59:00 UTC (44,937 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.