Computer Science > Information Theory
[Submitted on 15 Jun 2023]
Title:Improving the Lower Bound for the Union-closed Sets Conjecture via Conditionally IID Coupling
View PDFAbstract:Recently, Gilmer proved the first constant lower bound for the union-closed sets conjecture via an information-theoretic argument. The heart of the argument is an entropic inequality involving the OR function of two i.i.d.\ binary vectors, and the best constant obtainable through the i.i.d.\ coupling is $\frac{3-\sqrt{5}}{2}\approx0.38197$. Sawin demonstrated that the bound can be strictly improved by considering a convex combination of the i.i.d.\ coupling and the max-entropy coupling, and the best constant obtainable through this approach is around 0.38234, as evaluated by Yu and Cambie. In this work we show analytically that the bound can be further strictly improved by considering another class of coupling under which the two binary sequences are i.i.d.\ conditioned on an auxiliary random variable. We also provide a new class of bounds in terms of finite-dimensional optimization. For a basic instance from this class, analysis assisted with numerically solved 9-dimensional optimization suggests that the optimizer assumes a certain structure. Under numerically verified hypotheses, the lower bound for the union-closed sets conjecture can be improved to approximately 0.38271, a number that can be defined as the solution to an analytic equation.
Current browse context:
cs.IT
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.