Statistics > Machine Learning
[Submitted on 7 Jun 2023]
Title:Changing Data Sources in the Age of Machine Learning for Official Statistics
View PDFAbstract:Data science has become increasingly essential for the production of official statistics, as it enables the automated collection, processing, and analysis of large amounts of data. With such data science practices in place, it enables more timely, more insightful and more flexible reporting. However, the quality and integrity of data-science-driven statistics rely on the accuracy and reliability of the data sources and the machine learning techniques that support them. In particular, changes in data sources are inevitable to occur and pose significant risks that are crucial to address in the context of machine learning for official statistics.
This paper gives an overview of the main risks, liabilities, and uncertainties associated with changing data sources in the context of machine learning for official statistics. We provide a checklist of the most prevalent origins and causes of changing data sources; not only on a technical level but also regarding ownership, ethics, regulation, and public perception. Next, we highlight the repercussions of changing data sources on statistical reporting. These include technical effects such as concept drift, bias, availability, validity, accuracy and completeness, but also the neutrality and potential discontinuation of the statistical offering. We offer a few important precautionary measures, such as enhancing robustness in both data sourcing and statistical techniques, and thorough monitoring. In doing so, machine learning-based official statistics can maintain integrity, reliability, consistency, and relevance in policy-making, decision-making, and public discourse.
Current browse context:
stat.ML
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.