Computer Science > Computation and Language
[Submitted on 7 Jun 2023]
Title:Absformer: Transformer-based Model for Unsupervised Multi-Document Abstractive Summarization
View PDFAbstract:Multi-document summarization (MDS) refers to the task of summarizing the text in multiple documents into a concise summary. The generated summary can save the time of reading many documents by providing the important content in the form of a few sentences. Abstractive MDS aims to generate a coherent and fluent summary for multiple documents using natural language generation techniques. In this paper, we consider the unsupervised abstractive MDS setting where there are only documents with no groundtruh summaries provided, and we propose Absformer, a new Transformer-based method for unsupervised abstractive summary generation. Our method consists of a first step where we pretrain a Transformer-based encoder using the masked language modeling (MLM) objective as the pretraining task in order to cluster the documents into semantically similar groups; and a second step where we train a Transformer-based decoder to generate abstractive summaries for the clusters of documents. To our knowledge, we are the first to successfully incorporate a Transformer-based model to solve the unsupervised abstractive MDS task. We evaluate our approach using three real-world datasets from different domains, and we demonstrate both substantial improvements in terms of evaluation metrics over state-of-the-art abstractive-based methods, and generalization to datasets from different domains.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.