Electrical Engineering and Systems Science > Systems and Control
[Submitted on 2 Jun 2023 (v1), last revised 2 Feb 2024 (this version, v2)]
Title:Physics-Augmented Data-EnablEd Predictive Control for Eco-driving of Mixed Traffic Considering Diverse Human Behaviors
View PDF HTML (experimental)Abstract:Data-driven cooperative control of connected and automated vehicles (CAVs) has gained extensive research interest as it can utilize collected data to generate control actions without relying on parametric system models that are generally challenging to obtain. Existing methods mainly focused on improving traffic safety and stability, while less emphasis has been placed on energy efficiency in the presence of uncertainties and diversities of human-driven vehicles (HDVs). In this paper, we employ a data-enabled predictive control (DeePC) scheme to address the eco-driving of mixed traffic flows with diverse behaviors of human drivers. Specifically, by incorporating the physical relationship of the studied system and the Hankel matrix update from the generalized behavior representation to a particular one, we develop a new Physics-Augmented Data-EnablEd Predictive Control (PA-DeePC) approach to handle human driver diversities. In particular, a power consumption term is added to the DeePC cost function to reduce the holistic energy consumption of both CAVs and HDVs. Simulation results demonstrate the effectiveness of our approach in accurately capturing random human driver behaviors and addressing the complex dynamics of mixed traffic flows, while ensuring driving safety and traffic efficiency. Furthermore, the proposed optimization framework achieves substantial reductions in energy consumption, i.e., average reductions of 4.83% and 9.16% when compared to the benchmark algorithms.
Submission history
From: Dongjun Li [view email][v1] Fri, 2 Jun 2023 09:18:00 UTC (4,464 KB)
[v2] Fri, 2 Feb 2024 03:24:53 UTC (6,667 KB)
Current browse context:
eess.SY
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.