Quantum Physics
[Submitted on 2 Jun 2023 (v1), last revised 21 Jul 2023 (this version, v2)]
Title:On dynamical measures of quantum information
View PDFAbstract:In this work, we use the theory of quantum states over time to define an entropy $S(\rho,\mathcal{E})$ associated with quantum processes $(\rho,\mathcal{E})$, where $\rho$ is a state and $\mathcal{E}$ is a quantum channel responsible for the dynamical evolution of $\rho$. The entropy $S(\rho,\mathcal{E})$ is a generalization of the von Neumann entropy in the sense that $S(\rho,\mathrm{id})=S(\rho)$ (where $\mathrm{id}$ denotes the identity channel), and is a dynamical analogue of the quantum joint entropy for bipartite states. Such an entropy is then used to define dynamical formulations of the quantum conditional entropy and quantum mutual information, and we show such information measures satisfy many desirable properties, such as a quantum entropic Bayes' rule. We also use our entropy function to quantify the information loss/gain associated with the dynamical evolution of quantum systems, which enables us to formulate a precise notion of information conservation for quantum processes.
Submission history
From: Arthur Parzygnat [view email][v1] Fri, 2 Jun 2023 18:00:01 UTC (9,906 KB)
[v2] Fri, 21 Jul 2023 09:43:03 UTC (9,907 KB)
Current browse context:
quant-ph
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.