Computer Science > Machine Learning
[Submitted on 2 Jun 2023 (v1), last revised 7 Feb 2024 (this version, v3)]
Title:PAGAR: Taming Reward Misalignment in Inverse Reinforcement Learning-Based Imitation Learning with Protagonist Antagonist Guided Adversarial Reward
View PDFAbstract:Many imitation learning (IL) algorithms employ inverse reinforcement learning (IRL) to infer the intrinsic reward function that an expert is implicitly optimizing for based on their demonstrated behaviors. However, in practice, IRL-based IL can fail to accomplish the underlying task due to a misalignment between the inferred reward and the objective of the task. In this paper, we address the susceptibility of IL to such misalignment by introducing a semi-supervised reward design paradigm called Protagonist Antagonist Guided Adversarial Reward (PAGAR). PAGAR-based IL trains a policy to perform well under mixed reward functions instead of a single reward function as in IRL-based IL. We identify the theoretical conditions under which PAGAR-based IL can avoid the task failures caused by reward misalignment. We also present a practical on-and-off policy approach to implementing PAGAR-based IL. Experimental results show that our algorithm outperforms standard IL baselines in complex tasks and challenging transfer settings.
Submission history
From: Weichao Zhou [view email][v1] Fri, 2 Jun 2023 17:57:53 UTC (9,848 KB)
[v2] Mon, 2 Oct 2023 05:47:40 UTC (11,390 KB)
[v3] Wed, 7 Feb 2024 18:41:12 UTC (22,508 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.