Computer Science > Logic in Computer Science
[Submitted on 30 May 2023 (v1), last revised 4 Dec 2024 (this version, v3)]
Title:String Diagrams for $λ$-calculi and Functional Computation
View PDFAbstract:This tutorial gives an advanced introduction to string diagrams and graph languages for higher-order computation. The subject matter develops in a principled way, starting from the two dimensional syntax of key categorical concepts such as functors, adjunctions, and strictification, and leading up to Cartesian Closed Categories, the core mathematical model of the lambda calculus and of functional programming languages. This methodology inverts the usual approach of proceeding from syntax to a categorical interpretation, by rationally reconstructing a syntax from the categorical model. The result is a graph syntax -- more precisely, a hierarchical hypergraph syntax -- which in many ways is shown to be an improvement over the conventional linear term syntax. The rest of the tutorial focuses on applications of interest to programming languages: operational semantics, general frameworks for type inference, and complex whole-program transformations such as closure conversion and automatic differentiation.
Submission history
From: Fabio Zanasi [view email][v1] Tue, 30 May 2023 11:24:27 UTC (4,456 KB)
[v2] Thu, 19 Oct 2023 12:50:26 UTC (4,506 KB)
[v3] Wed, 4 Dec 2024 17:17:51 UTC (4,557 KB)
Current browse context:
cs.LO
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.