Computer Science > Machine Learning
[Submitted on 26 May 2023]
Title:Manifold Regularization for Memory-Efficient Training of Deep Neural Networks
View PDFAbstract:One of the prevailing trends in the machine- and deep-learning community is to gravitate towards the use of increasingly larger models in order to keep pushing the state-of-the-art performance envelope. This tendency makes access to the associated technologies more difficult for the average practitioner and runs contrary to the desire to democratize knowledge production in the field. In this paper, we propose a framework for achieving improved memory efficiency in the process of learning traditional neural networks by leveraging inductive-bias-driven network design principles and layer-wise manifold-oriented regularization objectives. Use of the framework results in improved absolute performance and empirical generalization error relative to traditional learning techniques. We provide empirical validation of the framework, including qualitative and quantitative evidence of its effectiveness on two standard image datasets, namely CIFAR-10 and CIFAR-100. The proposed framework can be seamlessly combined with existing network compression methods for further memory savings.
Current browse context:
cs.LG
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.