Computer Science > Distributed, Parallel, and Cluster Computing
[Submitted on 25 May 2023]
Title:Automated Tensor Model Parallelism with Overlapped Communication for Efficient Foundation Model Training
View PDFAbstract:Deep learning is experiencing a rise in foundation models that are expected to lead in various fields. The massive number of parameters necessitates the use of tensor model parallelism (TMP) in foundation model training. However, TMP requires frequent communication operations which significantly reduces the training efficiency. In this paper, we present Oases, an automated TMP method with overlapped communication to accelerate foundation model training. Oases proposes a fine-grained training schedule to maximize overlapping communication and computation operations that have data dependence. Additionally, we design the Oases planner that searches for the best model parallel strategy to achieve further accelerations. Unlike existing methods, Oases planner is specifically tailored to model the cost of overlapped communication-computation operations. We evaluate Oases on various model settings and train environments, and compare Oases to four stat-of-the-art implementations. Experimental results demonstrate that Oases achieves speedups of 1.01--1.48X over the fastest baseline, and speedups of up to 1.9X over Megatron-LM.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.