Computer Science > Machine Learning
[Submitted on 24 May 2023 (v1), last revised 18 Jun 2024 (this version, v4)]
Title:Estimating class separability of text embeddings with persistent homology
View PDF HTML (experimental)Abstract:This paper introduces an unsupervised method to estimate the class separability of text datasets from a topological point of view. Using persistent homology, we demonstrate how tracking the evolution of embedding manifolds during training can inform about class separability. More specifically, we show how this technique can be applied to detect when the training process stops improving the separability of the embeddings. Our results, validated across binary and multi-class text classification tasks, show that the proposed method's estimates of class separability align with those obtained from supervised methods. This approach offers a novel perspective on monitoring and improving the fine-tuning of sentence transformers for classification tasks, particularly in scenarios where labeled data is scarce. We also discuss how tracking these quantities can provide additional insights into the properties of the trained classifier.
Submission history
From: Kostis Gourgoulias [view email][v1] Wed, 24 May 2023 10:58:09 UTC (7,905 KB)
[v2] Mon, 2 Oct 2023 16:54:34 UTC (7,912 KB)
[v3] Wed, 25 Oct 2023 17:06:36 UTC (1,442 KB)
[v4] Tue, 18 Jun 2024 15:43:18 UTC (2,830 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.