Computer Science > Computer Vision and Pattern Recognition
[Submitted on 23 May 2023 (v1), last revised 22 Mar 2024 (this version, v3)]
Title:Online Open-set Semi-supervised Object Detection with Dual Competing Head
View PDF HTML (experimental)Abstract:Open-set semi-supervised object detection (OSSOD) task leverages practical open-set unlabeled datasets that comprise both in-distribution (ID) and out-of-distribution (OOD) instances for conducting semi-supervised object detection (SSOD). The main challenge in OSSOD is distinguishing and filtering the OOD instances (i.e., outliers) during pseudo-labeling since OODs will affect the performance. The only OSSOD work employs an additional offline OOD detection network trained solely with labeled data to solve this problem. However, the limited labeled data restricts the potential for improvement. Meanwhile, the offline strategy results in low efficiency. To alleviate these issues, this paper proposes an end-to-end online OSSOD framework that improves performance and efficiency: 1) We propose a semi-supervised outlier filtering method that more effectively filters the OOD instances using both labeled and unlabeled data. 2) We propose a threshold-free Dual Competing OOD head that further improves the performance by suppressing the error accumulation during semi-supervised outlier filtering. 3) Our proposed method is an online end-to-end trainable OSSOD framework. Experimental results show that our method achieves state-of-the-art performance on several OSSOD benchmarks compared to existing methods. Moreover, additional experiments show that our method is more efficient and can be easily applied to different SSOD frameworks to boost their performance.
Submission history
From: Zerun Wang [view email][v1] Tue, 23 May 2023 08:15:02 UTC (9,310 KB)
[v2] Fri, 25 Aug 2023 07:59:21 UTC (13,489 KB)
[v3] Fri, 22 Mar 2024 01:17:25 UTC (8,862 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.