Computer Science > Networking and Internet Architecture
[Submitted on 22 May 2023]
Title:When Computing Power Network Meets Distributed Machine Learning: An Efficient Federated Split Learning Framework
View PDFAbstract:In this paper, we advocate CPN-FedSL, a novel and flexible Federated Split Learning (FedSL) framework over Computing Power Network (CPN). We build a dedicated model to capture the basic settings and learning characteristics (e.g., training flow, latency and convergence). Based on this model, we introduce Resource Usage Effectiveness (RUE), a novel performance metric integrating training utility with system cost, and formulate a multivariate scheduling problem that maxi?mizes RUE by comprehensively taking client admission, model partition, server selection, routing and bandwidth allocation into account (i.e., mixed-integer fractional programming). We design Refinery, an efficient approach that first linearizes the fractional objective and non-convex constraints, and then solves the transformed problem via a greedy based rounding algorithm in multiple iterations. Extensive evaluations corroborate that CPN-FedSL is superior to the standard and state-of-the-art learning frameworks (e.g., FedAvg and SplitFed), and besides Refinery is lightweight and significantly outperforms its variants and de facto heuristic methods under a variety of settings.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.