Computer Science > Cryptography and Security
[Submitted on 19 May 2023 (v1), last revised 20 Nov 2023 (this version, v2)]
Title:DAP: A Dynamic Adversarial Patch for Evading Person Detectors
View PDFAbstract:Patch-based adversarial attacks were proven to compromise the robustness and reliability of computer vision systems. However, their conspicuous and easily detectable nature challenge their practicality in real-world setting. To address this, recent work has proposed using Generative Adversarial Networks (GANs) to generate naturalistic patches that may not attract human attention. However, such approaches suffer from a limited latent space making it challenging to produce a patch that is efficient, stealthy, and robust to multiple real-world transformations. This paper introduces a novel approach that produces a Dynamic Adversarial Patch (DAP) designed to overcome these limitations. DAP maintains a naturalistic appearance while optimizing attack efficiency and robustness to real-world transformations. The approach involves redefining the optimization problem and introducing a novel objective function that incorporates a similarity metric to guide the patch's creation. Unlike GAN-based techniques, the DAP directly modifies pixel values within the patch, providing increased flexibility and adaptability to multiple transformations. Furthermore, most clothing-based physical attacks assume static objects and ignore the possible transformations caused by non-rigid deformation due to changes in a person's pose. To address this limitation, a 'Creases Transformation' (CT) block is introduced, enhancing the patch's resilience to a variety of real-world distortions. Experimental results demonstrate that the proposed approach outperforms state-of-the-art attacks, achieving a success rate of up to 82.28% in the digital world when targeting the YOLOv7 detector and 65% in the physical world when targeting YOLOv3tiny detector deployed in edge-based smart cameras.
Submission history
From: Amira Guesmi [view email][v1] Fri, 19 May 2023 11:52:42 UTC (8,414 KB)
[v2] Mon, 20 Nov 2023 11:18:50 UTC (9,317 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.